
www.manaraa.com

deebee: General, Personal and Relational Database
Management System for Casual Users

Dept. of CIS - Senior Design 2009-2010

Yan Yanovskiy
ayanov@seas.upenn.edu

Univ. of Pennsylvania
Philadelphia, PA

Dr. Susan B. Davidson
susan@cis.upenn.edu
Univ. of Pennsylvania

Philadelphia, PA

ABSTRACT
deebee is a general, personal and relational database man-

agement system specifically designed for casual users who

have no knowledge of database concepts. Currently, users

have heaps of data that they need to manage without any

niche applications to help them. Thus, we will create a gen-

eral data management system based on the relational database

model so that the system can be flexible to the user’s needs.

The three main pillars of the user’s experience will be to

edit, view, and share tables. In the creation stage, the user

will quickly and easily set up the schema for their databases

and fill it in with data. Then, they will be able to share this

data with colleagues, family and friends and customize pri-

vacy settings for each invited user. Finally, the system will

allow users to access the data using Query By Example, a

powerful yet easy way to allow users to query their data.

Because deebee is built as a website instead of a desktop

application, it is automatically cross-platform. In addition,

the guiding philosophy of the project is to create intuitive de-

sign and artfully abstract away technical details of database

administration.

1. INTRODUCTION
We are all currently living in what is commonly referred

to as the “Information Age.” This is a time where data is
extremely important, and keeping track of it all is getting
harder and harder. Fortunately, E. F. Codd [4] solved the
problem of creating powerful yet flexible databases with his
relational model in 1970. A relational database consists of
relations, which are sets of uniquely identifiable tuples with
the same attributes. Later, Peter Chen [20] developed a
way to conceptually visualize data in a relational database
with the Entity Relationship (ER) model, in which enti-
ties (nouns) are connected with relationships (verbs) and
attributes (adjectives). Since then, computer programmers
have adopted the relational model, and it is now used ubiq-
uitously on the World Wide Web.

There are several theoretical concepts that address how
to access data set up in these relations. Two such concepts
are relational algebra and relational calculus. SQL (Struc-
tured Query Language) was the practical outgrowth of these
concepts [18]. Although SQL has become the de facto stan-
dard querying language for these relational databases, an-
other way to query, called Query By Example (QBE), was
invented by Moshé M. Zloof [23]. QBE allows users to eas-
ily build queries (that can be translated into SQL) by sim-

ply inserting values into an empty table. For instance, if
one wanted to search for all “Person” records with the first
name “John” who live in Pennsylvania, one would simply
fill in an empty table with the word “John” under “Name”
and “Pennsylvania” under state. Then the equivalent SQL
query (e.g., SELECT * FROM Person WHERE FirstName
= ‘John’ AND State = ‘Pennsylvania’) would be created
automatically. One should refer to Figure 1 for a User In-
terface (UI) mockup of QBE. The goal was to appeal to
casual users who have little to no experience in computers
or mathematics [23].

Figure 1: QBE UI Mockup

Users have benefited from immensely popular data man-
agement software that are based on the aforementioned con-
cepts, such as Apple’s iTunes (to manage music and other
media) and iPhoto (to manage photos). iTunes [13], for in-
stance, uses QBE for its “smart playlists.” However, there
has not been a focus on general, personal database man-
agement systems for casual, non-business users. The reason
creating a very general system is important is because while
software developers often fill niches where data management
is needed (e.g., music management), not every niche is prof-
itable nor suitable for a standalone application. For exam-
ple, where should a piano teacher keep track of his or her
lessons (how much did it cost, how long was it, was there
noticeable improvement, etc.)? The market for piano lesson
data management may not be large enough, so currently,
the solution most users flock to as a way to store data is
Microsoft Excel [7]. However, while Microsoft Excel offers
some database management features, such as Sort and Fil-

www.manaraa.com

ter, its primary purpose is not to be a relational database
system. Instead, it is a spreadsheet application. Thus, users
lack the tools to build powerful queries, semantically con-
nect their data and share data easily with colleagues, fam-
ily and friends. In addition, they do not adhere to good
database management techniques, such as reducing redun-
dancies where it is not needed [7].

Thus, an application that leverages the powers of rela-
tional databases in an easy-to-use interface would give peo-
ple more power to keep track of their data. This applica-
tion would allow users to input data with fields of their own
choosing. Additionally, users would be able to quickly and
easily share their databases with certain groups of people or
the world. For example, the coach of a little league base-
ball team could keep track of all the children’s positions and
statistics and then share it with parents who could track
their children’s status and progress.

2. RELATED WORK

2.1 Research
This is not the first project to attempt to bring relational

databases to the “casual” user. In fact, the father of the
relational model, E.F. Codd himself, wrote a paper entitled
“Access to Relational Data Bases for a Casual User” [5].
Codd’s project, called “RENDEZVOUS,” however, focused
on connecting natural language questions with unambiguous
queries. deebee, on the other hand, will focus on a Graphical
User Interface (GUI) as the liaison between casual users’
thought processes and SQL queries.

Moreover, there has also been research that studies the
effectiveness of various database interface concepts. For
instance, Cattell in [3] proposed a user interface based on
the ER model as a way to allow casual users to construct
databases. One should refer to Figure 2 to see what an ER
UI could look like. Another study in [8], which gave a wide
set of users database-related tasks to complete in a two-hour
time limit, corroborated the effectiveness of this proposal
by showing that people who used the spatial database view
demonstrated 21% better performance than did those given
the nonspatial view. Similarly, in the category of ease of
use, subjects in the spatial view group rated ease of use 16%
higher than the subjects in the nonspatial view.

In addition, Thomas et al. in [21] provided a psychologi-
cal study of Zloof’s QBE idea. Although they acknowledge
some weak points (e.g., users had problems with aggregate
operations such as COUNT), QBE has characteristics that
make it ideal for casual users. For example, since the user
is provided with a template, there is no need for the user
to generate queries “free style.” Moreover, because there is
no natural language component, colloquial and formal lan-
guages do not clash (e.g., “and”as it used in natural English
is not always equivalent to logical “and”). Finally, QBE is
easy, yet extendable with experience and need for more com-
plicated queries [21].

2.2 Competitors
The primary competitor to the proposed system would

be spreadsheet applications, such as Microsoft Excel [12],
and more importantly, Google Docs [10]. Google Docs al-
lows people to create tables (i.e., sheets in a spreadsheet
file) and share this data with other users in real time with a
detailed revision history. However, as with any spreadsheet

Figure 2: ER UI Mockup

application, this option does not focus on being a database
and therefore is not optimized for handling data and rela-
tionships between data. That is, one would have to already
understand database concepts to use spreadsheet applica-
tions in a more powerful way. Also, spreadsheets created in
Google Docs do not provide for advanced filtering features.
For instance, Google Docs does not allow for a QBE search
such that searching for “main” in a record that contains the
string “123 Main St.” would result in a positive hit.

Another Microsoft product that is a competitor is Mi-
crosoft Access [1], which is a stripped down version of a com-
plete database management system. Despite being stripped
down compared to software like Microsoft SQL Server, it
provides the power of a relational database to end users and
is already included in many Office suites. However, like some
of the other competitors that will be mentioned, it is clearly
focused on business clients using Windows. The first clue
is the price point: $229 for a single user license. In ad-
dition, the interface is clearly designed for a user that has
experience in database management and is not designed to
be extremely intuitive. Moreover, because it is a desktop
application, a user cannot share access with other users as
quickly and easily as in Google Docs for example1 [1].

Similarly, there are many other websites that provide data
management systems online, but all are very clearly target-
ing business clients only. Some examples of these sites in-
clude Intuit QuickBase, Caspio Bridge, TrackVia and Dab-
ble DB. The last [9] is an especially interesting database
management system, because although it is designed for
business clients, it attempts to make database building slightly
more intuitive and accessible. For example, it has a data vi-
sualization view in which data can be expressed on a map of
the United States. On the other hand, Dabble DB users are
charged $8 per editing user per month, which means there
is a high threshold for newcomers to overcome. Most prob-
ably do not understand the benefits of a relational database

1It should be noted that it seems Microsoft is attempting
to integrate online solutions directly into the application in
Office 2010. However, these services are still very clearly
focused on business users and remain too unintuitive for
casual users. Additionally, Microsoft will even feature web
versions of applications such as Excel, but not Access. These
web applications will resemble Google Docs.

www.manaraa.com

system and will not adopt it. Plus, sharing write ability
of databases with friends and family is infeasible at such
rates. Finally, the interface still does not abstract away
from enough database concepts to be suitable for casual
users [9]. Another example of a business-oriented database
system that is slightly more user-friendly is Zoho Creator [6].
It is very powerful and even includes a custom scripting fea-
ture. But again, it does not walk people through the creation
of a database slowly enough, and it is priced to discourage
sharing (even at $45 per month, one can only share editing
control over a database among ten users) [6].

Yet another potential competitor is Bento [2], a Mac and
iPhone/iPad application by FileMaker. It is a powerful yet
easy-to-use personal database, filled with templates, forms
and even Query By Example. Its greatest advantage is that
it the interface is clearly designed for personal and small
business use (e.g., CD collections, art collections, client lists).
However, it has several flaws that the proposed system would
improve on. First, Bento’s only platforms are the Mac and
iPhone/iPad, which means both that Windows and Linux
users cannot use it, and since it is not on a web platform,
sharing is severely limited (Bento 3 has just added the abil-
ity to share databases on up to five computers on a Local
Area Network). Also, it does not provide extra features,
such as data visualizations of locations and time [2].

Thus, there is no application that addresses the problem of
allowing casual users to create and share databases quickly
and easily. The current solutions are either constrained to a
platform or targeted to business and experienced users. The
vision of this project, as a result, is to introduce people to
the idea of a relational database, but most importantly, ab-
stract away from the technical details. One should not need
to understand SQL queries or relational algebra to directly
leverage their power. Hence, the goals of this project are to
be:

1. Cross-platform

2. General for many different types of data

3. For casual users with no prior experience (i.e., per-
sonal)

4. Have an easy-to-use UI

5. Allow for users to dynamically share data with other
users

3. SYSTEM MODEL

3.1 Developer Model
deebee consists of five “layers” as seen in Figure 3. The

most important layer is the “deebee” layer, which is the
backend application written in PHP. It is a liaison between
the CodeIgniter web framework (to be further detailed in
Section 4) and the web interface that end users will interact
with. The underlying server technologies (PHP, MySQL and
Apache) lie underneath the CodeIgniter framework, thus
making CodeIgniter the liaison between the deebee system
and the SQL queries for the backend database. This way,
the interface layer should be not be affected by significant
changes in how the system interacts with the backend database.
In the future, an Application Programming Interface (API)
will be created that will sit on top of the Main System next

Figure 3: System Layers

to the interface and will provide developers an outlet to the
database on the bottom. Similarly, it will be helpful to im-
plement a portion of the website to be optimized for mobile
viewing. This would allow users to use deebee in mobile set-
tings, expanding the reach of relational databases in average
users’ lives.

3.2 User Model

Figure 4: Create Share Access Model

In response to the flaws examined in related systems and
competitors, deebee will focus on a different target audience
as well as a different type of interface. The most crucial
part of the project is to abstract away important database
concepts (e.g., relations, relational algebra, SQL queries) so
that casual end users can easily use the system. Therefore,
the system will allow the user to perform three easy steps:
create, share and access (see Figure 4). First, the user will
be able to create tables and relationships to store his or
her data. The system will allow users to do this by building
fields and then inserting records as one is accustomed to in
a spreadsheet.

Next, the user will be able to share the data with a select
group of individuals, who will be able to see the respective
table in their “Tables” section under “Tables You Have Ac-
cess To.” Alternatively, the user can set the database to be
viewable (and possibly even editable) by the public. Gran-
ular privacy settings will allow the user to customize which
users have read or write access.

Finally, the user (and the invited users) will be able to
access the data using Query By Example, much like they
would in iTunes. For example, the user can build a query

www.manaraa.com

(called a “smart playlist” in iTunes) by setting that the
“Name” field contain “John” and the address contain the
string “Main St.” Thus, the user will be able to leverage
some of the power of SQL queries and relational algebra or
calculus without any knowledge of the theory behind these
queries. One can see a mockup of a QBE UI in Figure 1
and the implementation in Figure 8. Note that the sys-
tem will automatically logically AND all the individual field
searches. Additionally, wildcards will automatically be ap-
pended to both sides of search strings. For instance, a search
for “main” in the “Address” field will automatically display
records that contain “123 Main St.” in the “Address” field.

Figure 5: Tables

Although this user model was originally intended to be
explicitly part of the user interface, the sections that are
exposed to the user are to “Edit,” “View,” and “Share” ta-
bles. The reason that this user model was not explicitly
implemented as part of the UI was because it would be too
constricting due to its very linear nature. Thus, users can
freely move from one mode to another in the current im-
plementation. Users can access both their own tables and
tables which have been shared with them in the “Tables”
section (see Figure 5).

In the “Edit” mode (see Figure 6), users are able to cre-
ate and delete tables as well as fields (i.e., columns). In the
“View” mode (see Figure 7), they are able to view, edit, add
and delete entries. In addition, the QBE search is located in
the “View” mode (see Figure 8). Note that the Uniform Re-
source Locator (URL) of search queries has been specifically
designed to be easy-to-read and use by implementing key-
value pairs (field names followed by a forward slash followed
by the value). For example, a user’s search (e.g., names con-
taining “red” and addresses containing “main”) would yield
the following URL ending: “tables/view/12/Name/red/ Ad-
dress/main.”

Next, in the “Share” mode (see Figure 9), users can select
the aforementioned privacy settings: view and edit permis-
sions. One simply has to select “Block” to remove the user
from this privacy list.

4. SYSTEM IMPLEMENTATION
First, the backend of the system runs on a LAMP setup:

Linux Apache MySQL PHP. This set of applications was
chosen because it is the industry standard for web appli-
cations of this kind. In addition, because of its open and
prevalent nature, we will be able to continue leveraging third

Figure 6: Edit Mode

Figure 7: View Mode

party libraries. Additionally, this setup is being version con-
trolled by Subversion.

In order to implement a more robust search engine, we
used both inverted indices and Porter’s Stemming Algo-
rithm, an algorithm for suffix stripping by M.F. Porter [16].
Inverted indices allow for faster keyword searching because
they allow for easier and quicker search calculations (e.g.,
one can easily extend basic functionality to include rele-
vance and partial matching) [18]. More specifically, this suf-
fix stripping algorithm allows a user to search for “raining”
and get back results that contain the word “rained.” Fortu-
nately, an openly available implementation of this algorithm
in PHP is available from M.F. Porter’s official website [17].

In addition, as can be seen in Figure 3, over the the
base system lies the CodeIgniter framework [11]. This PHP
framework was chosen because it provides a wealth of useful
libraries (e.g., form submissions, precautions against SQL
injections), uses the Model-View-Controller (MVC) archi-
tectural pattern (see Figure 10) and has been shown to be
faster and more responsive than other PHP frameworks [19].
The MVC design pattern was implemented because it al-

www.manaraa.com

Figure 8: QBE Search

Figure 9: Share

lows for easily scalable modifications to data retrieval (the
“model”), the output (the “view”) and the interaction be-
tween the two (the “controller”). The decoupling of the in-
terface from the logic will also allow easier deployment to
targets other than the desktop browser in the future, such
as the mobile browser and the API. Additionally, the models
themselves become inherently modular, thus aiding in easy
modification and expansion.

Figure 10: Model-View-Controller

Moreover, part of the interface is based on jQuery, an
AJAX framework [14]. AJAX allows the developers of a

system to create flexible and dynamic user interfaces (where
appropriate) to minimize page refreshes and create a more
intuitive interface experience for the user. Moreover, jQuery
provides for easy-to-implement effects, such as a search area
that slides up and down at the toggle of a button. This
creates for a smoother and more natural user experience.

Clearly, an important part of the project is how the dee-

bee layer accesses the backend database. The implemented
approach is to translate users’ tables into MySQL tables in
a simple one-to-one mapping. That is, a user’s table will
be a real table in the SQL database. As users update and
delete their tables, commands to the CodeIgniter database
library are called, which subsequently call SQL commands
such as“ALTER TABLE”and“DROP TABLE”to the back-
end database. Thus, in following the aforementioned MVC
pattern, when a user clicks on “Create New Table” in the
view, the controller gathers the inputs (e.g., name) and calls
the UserTable model. Although there is a one-to-one map-
ping of UserTables to SQL tables, because the developers
of MySQL note that there is a performance disadvantage to
having too many tables in the same database, the tables are
split into different databases by alphabetical order of the
table’s name [15].

5. RESULTS
The most important criteria for the success of the project

is clearly how easy and intuitive the interface is. The goal of
this project was not to invent a new paradigm of database
management; instead, it was to abstract away these impor-
tant database concepts so that casual users can use them.
Essentially, this is an optimization between ease of use and
how powerful and flexible the system is.

The possible use cases for this project are numerous. For
example, one could use deebee to keep track of bills, to-do
lists, movies watched, wish lists, athletic and fitness-related
progress and more. At the same time, there are many pro-
fessional use cases as well. For instance, real estate agents
and prospective home buyers can use this project to keep
track of the houses that they find interesting. Imagine a
table with fields like “Address” and “Comments.” The real
estate agent can give “edit” permission to their clients and
then add new records to the table whenever a new house
appears on the market. Likewise, the clients can add their
thoughts about the house to the “Comments” field.

Other use cases include keeping track of collectable items
(both obtained and on a wish list), bills, clients and more.
Small business managers could use deebee, for example, to
keep track of their suppliers. The managers could share
these tables with salesmen and a new channel of dynamically-
updated communication has been created. And since deebee

is built on top of a web platform and uses open standards
(like JavaScript), people can access the tables from almost
any Internet-enabled device (e.g., desktop, laptop, smart-
phone, tablet).

6. FUTURE WORK
Now that the fundamental technology for this project has

been implemented, there are many more features that one
could add to this website in the future.

For example, it would be useful to have RSS feeds for
each user and database so that people can easily keep track
of the data they care about. Next, in order to make the

www.manaraa.com

sign up process easier and more connected with the web
(since the “share” part of the project is essentially a “social
network”), the project could incorporate Facebook Connect
and/or OpenID into the signup process.

There are also a lot of features one could implement re-
lated to data visualizations. For instance, one can have a
special “Location”field in a table and then embed and popu-
late a Google Map into the page. Similarly, one could use the
SIMILE Timeline Widget (JavaScript-based timeline) [22] to
populate a dynamic timeline full of the table’s records.

Additionally, it would be very helpful to have a mobile
version of the site, so that users can access their data any-
where their phone can access the Internet. An additional
feature that could be implemented would be to build an API
so that developers can tap this wealth of data. As a result,
third parties, such as various to-do list interface developers,
could use the same source of personal data to populate their
software. Just as in the MVC design pattern that was used
to build this project, this decoupling of data from interface
development would allow for a broad range of creative so-
lutions, all synchronized and personal to you. Clearly, very
carefully constructed privacy controls would also have to be
created for this API in order to alleviate privacy concerns.

Also, as with any website that requires membership, inter-
operability will also be important. First, the system could
import and export standard files such as Excel spreadsheets
(.xls and .xlsx), XML files and Comma Separated Value
(CSV) text files. As can be seen in [7], research in how
to smartly convert Excel tables into a relational database
has already been published. That is, the process will decide
how to smartly get rid of unnecessary redundancies often
prevalent when a user tries to use a spreadsheet application
as a database. This process is based on the theory of data
normalization and functional dependencies, concepts from
the theoretical study of databases that describes a certain
type of relationship between data in a relational database.

Finally, the system needs to be optimized to allow for
scalability if the number of users in the system should ex-
ponentially grow.

7. CONCLUSION
deebee was designed to give casual users the power and

flexibility of relational databases, while abstracting away
from all technical considerations. Thus, a casual user, with
no experience in computer science or mathematics, could sit
down, and using any platform that has access to the web,
start creating tables that they can then dynamically share
with family, friends and coworkers. By using the concept of
QBE, users can build powerful queries easily. And by being
built on top of the CodeIgniter PHP framework, which im-
plements the MVC design pattern, this project also ensures
to be scalable and expandable in the future.

8. REFERENCES
[1] Microsoft Access. http://office.microsoft.com/en-

us/access/default.aspx.

[2] FileMaker Bento.
http://www.filemaker.com/bento/.

[3] R. G. G. Cattell. An entity-based database user
interface. In SIGMOD ’80: Proceedings of the 1980

ACM SIGMOD international conference on

Management of data, pages 144–150, New York, NY,
USA, 1980. ACM.

[4] E. F. Codd. A relational model of data for large shared
data banks. Commun. ACM, 13(6):377–387, 1970.

[5] E. F. Codd. Access to relational data bases for a
casual user. SIGART Bull., (61):31–32, 1977.

[6] Zoho Creator. http://creator.zoho.com/.

[7] Jácome Cunha, João Saraiva, and Joost Visser. From
spreadsheets to relational databases and back. In
PEPM ’09: Proceedings of the 2009 ACM SIGPLAN

workshop on Partial evaluation and program

manipulation, pages 179–188, New York, NY, USA,
2009. ACM.

[8] Steven S. Curl, Lorne Olfman, and John W. Satzinger.
An investigation of the roles of individual differences
and user interface on database usability. SIGMIS

Database, 29(1):50–65, 1997.

[9] Dabble DB. http://dabbledb.com/.

[10] Google Docs. http://docs.google.com/.

[11] EllisLab. Codeigniter. http://codeigniter.com/.

[12] Microsoft Excel. http://office.microsoft.com/en-
us/excel/default.aspx.

[13] Apple iTunes.
http://www.apple.com/itunes/what-is/.

[14] The jQuery Project. jquery. http://www.jquery.com/.

[15] MySQL. Disadvantages of creating many tables in the
same database.
http://dev.mysql.com/doc/refman/4.1/en/creating-

many-tables.html.

[16] M. F. Porter. An algorithm for suffix stripping. pages
313–316, 1997.

[17] M.F. Porter. Porter’s stemming algorithm.
http://tartarus.org/ martin/PorterStemmer/.

[18] Raghu Ramakrishnan and Johannes Gehrke. Database

Management Systems. McGraw-Hill, 3 edition, 2003.

[19] SellersRank.com. Php framework benchmarks.
http://www.sellersrank.com/web-frameworks-

benchmarking-results/.

[20] Peter Pin shan Chen. The entity-relationship model:
Toward a unified view of data. ACM Transactions on

Database Systems, 1:9–36, 1976.

[21] John C. Thomas and John D. Gould. A psychological
study of query by example. In AFIPS ’75: Proceedings

of the May 19-22, 1975, national computer conference

and exposition, pages 439–445, New York, NY, USA,
1975. ACM.

[22] SIMILE Widgets. http://www.simile-widgets.org/.

[23] Moshé M. Zloof. Query by example. In AFIPS ’75:

Proceedings of the May 19-22, 1975, national

computer conference and exposition, pages 431–438,
New York, NY, USA, 1975. ACM.

